Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase I

Completed Technology Project (2008 - 2008)

Project Introduction

Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and extraterrestrial exploration missions, Crew Exploration Vehicles, extended-life orbital transfer vehicles, and space depots will range from 10 to 50 W at temperatures between 20 and 120 K. Turbo-Brayton cryocoolers are ideal for these systems because they are lightweight, compact and very efficient at high cooling loads, in addition to their inherent attributes of high reliability; negligible vibration; long, maintenance-free lifetimes; and flexibility in integrating with spacecraft systems and instruments. To date, space-borne turbo-Brayton technology has been developed for low cooling loads. During the proposed program, Creare will develop an advanced, high efficiency turbine optimized for a high-capacity cryocooler. The advanced turbine will enable a landmark reduction in cryocooler input power and overall cooling system mass. In Phase I, we will define the requirements for a particular mission class, develop the conceptual design of a multistage cryocooler to meet these requirements, develop the preliminary design of the advanced turbine and perform proof-of-concept tests. During Phase II, we will fabricate the turbine and demonstrate its performance at prototypical operating conditions.

Primary U.S. Work Locations and Key Partners

Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase I

Completed Technology Project (2008 - 2008)

Organizations Performing Work	Role	Туре	Location
Glenn Research Center(GRC)	Lead Organization	NASA Center	Cleveland, Ohio
Creare LLC	Supporting Organization	Industry	Hanover, New Hampshire

Primary U.S. Work Locations	
New Hampshire	Ohio

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Mark Zagarola

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - ☐ TX14.1 Cryogenic Systems
 ☐ TX14.1.3 Thermal
 Conditioning for
 Sensors, Instruments, and High Efficiency
 Electric Motors

